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Abstract
We present a method that allows us to find the asymptotic form of various
characteristics of disordered systems in the strong localization regime, i.e.,
when either the random potential is big or the energy is close to a spectral
edge. The method is based on the hypothesis that the relevant realizations
of the random potential in the strong localization regime have the form of a
collection of deep random wells that are uniformly and chaotically distributed
in space with a sufficiently small density. Assuming this and using the density
expansion, we show first that the density of wells coincides in leading order with
the density of states. Thus the density of states is in fact the small parameter of
the theory in the strong localization regime. Then we derive the Mott formula
for the low frequency conductivity and the asymptotic formulae for certain
two-point correlators when the difference of the respective energies is small.

PACS number: 05.60.Gg

1. Introduction

It is widely accepted and proved rigorously in many cases that elementary excitations in
disordered media are localized if the disorder is strong enough or/and the energy of the
excitations is close enough to the band edges. The idea dates back to the famous paper [4] by
Anderson who emphasized, in particular, the aspects related to the transition from localized
to delocalized states. The idea was further developed by Mott and I Lifshitz (see, e.g., their
review works [25, 20]). In particular, it was I Lifshitz who singled out the regime of high
disorder or low energy where the localization is most pronounced. This regime is now known
as the strong localization regime. According to I Lifshitz, in this case, the pertinent realizations
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of the random potential have the form of a collection of deep potential wells which are so rare
and whose form is so irregular that the quantum mechanical probability for tunnelling through
a macroscopic number of the localization wells vanishes.

The study of localization and relevant physical characteristics of disordered systems can
be reduced to the study of moments of the density operator ρE = δ(E − H), where H is the
(one-body) Hamiltonian of the system. By using the coordinate representation, we can write
the lth moment ρE (lth correlation function) as follows,

Kl(x1, . . . , xl; y1, . . . , yl;E1, . . . , El) = 〈
ρE1(x1, y1) · · · ρEl

(xl, yl)
〉

(1.1)

where the 〈· · ·〉 denotes averaging with respect to the disorder.
The simplest case of the correlation function (1.1), corresponding to l = 1, x1 = y1 = x,

ρ(E) = 〈ρE(x, x)〉 (1.2)

i.e., to the average of the local density of states ρE(x, x), is known as the density of states
(DOS) of the system.

I Lifshitz suggested a non-perturbative method of computing the asymptotic form of the
DOS in the strong localization regime [19]. The above description of typical realizations
of the random potential is implemented in this method by the assumption of independent
quantization of a quantum particle in each localization well (see [20, 21, 7]), thus the complete
localization of a particle in an exponential neighbourhood of each well. A rigorous proof
of the complete and exponential localization in the strong localization regime was given by
Fröhlich and Spencer [9, 22, 27].

In both these important results of the localization theory the tunnelling between the
localization wells plays no significant role. In I Lifshitz’s argument, other wells are simply
ignored. The crucial ingredient in the rigorous proof of the complete localization in the
strong localization regime is a rather sophisticated probabilistic extension of the Kolmogorov–
Arnold–Moser theory (known as the multi-scale analysis) which allows one to verify that
tunnelling between wells is strongly suppressed, and therefore does not qualitatively change
the picture suggested by the independent wells quantization assumption.

The DOS determines equilibrium properties of a disordered system in the one-body
approximation, i.e., of the ideal Fermi gas in a random external field. The study of kinetic
properties of the gas and of interaction effects requires knowledge of the higher moments (1.1)
of the density operator ρE , especially the second moment K2. Important quantities that can be
expressed via K2 are the density–density correlator and the current–current correlator [10, 21].
These correlators allow us to answer relevant questions concerning the nature of localization
and the behaviour of the conductivity and other physical characteristics.

The complete localization of states in a certain interval of energies implies that the zero-
temperature dc conductivity vanishes if the Fermi energy lies in this interval (see [2] for a
proof and a discussion). On the other hand, since the energies of localized states are dense,
the zero-temperature ac conductivity is expected to be non-zero for any non-zero frequency
ν of the external field. It was Mott who first proposed ‘resonant’ tunnelling between pairs
of wells as a mechanism of the low frequency ac conductivity in localized systems [25].
According to Mott, one can view those states, resulting from independent quantization in each
localization well (localization centre in Mott’s terminology), as a kind of ‘bare’ state. They
decay exponentially in the distance from the corresponding localization centre. Two (several)
bare states with widely spaced centres but with sufficiently close energies can ‘resonate’.
This leads to the two-centre states (respectively multi-centre states), whose energies are
exponentially close in the separation between the centres. The condition for a pair of wells
to be in resonance determines the distance between resonating wells, thereby determining
the characteristic value of the dipole moment of two bare states of wells, and the square of
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the dipole moment is, in essence, the conductivity according to the linear response theory
(see formula (3.4) below). This observation leads to the following asymptotic expression for
the low frequency conductivity,

σ(ν,EF ) = Aρ2(EF )ν2
(

log
ν0

ν

)d+1
(1.3)

in the case where

T � ν � EF . (1.4)

Here T is the temperature, ν the frequency of an alternating external field, EF the Fermi energy
(supposed to be in the localized spectrum). A and ν0 are determined by the fundamental
constants and by the random potential.

Formula (1.3) was discussed in many works (see, e.g., [7, 8, 14, 10, 11, 21, 25, 15] and
section 5). However, a consistent ‘first principle’ derivation of the formula is still not available
in a general multi-dimensional case. We mean a derivation based on the Kubo formula (see
formulae (3.2)–(3.4) below), in which the two-point correlation function is computed for a
given random potential in the asymptotic regime (1.4).

The fact that such a derivation is still missing encourages us to present in this paper a
heuristic method that allows us to obtain formula (1.3) and some other two-point correlation
functions (i.e., (1.1) for l = 2 and |E1 −E2| := ν � |E1|, |E2|), and that, we believe, clarifies
Mott’s initial arguments.

The method is based on the above hypothesis on the form of pertinent realizations of the
random potential as systems of deep and rare localization wells. Viewing the density of wells
as a small parameter of the theory, we apply a version of the virial expansion to compute
the leading contribution to the moments Kl of (1.1) for l = 1, 2. In particular, by applying
this procedure to the DOS, we find that its leading order is the density of the localization
wells. This shows that the small parameter of the theory is the DOS itself, whose smallness
is known to be an important condition for localization. Furthermore, we find that the leading
order of the pair correlation functions, the ac conductivity in particular, is determined by
two-centre states, resulting from resonant tunnelling between a pair of localization wells, in
agreement with Mott’s ideas. This leads to formula (1.3) and, therefore, supports the idea
of pair approximation in Mott’s derivation of (1.3). Among our other results, we mention
high peaks of some pair correlation functions (see (4.1) and (4.2) below), appearing in a
neighbourhood of the origin and on the ‘resonating’ distance, determined by the frequency of
the external field. Analogous peaks were found before in the one-dimensional case for strong
localization [14] as well as in the weak localization regime [11]. However, in these cases, the
peaks are of the order ρ2(EF ), while in the general d-dimensional case, the peaks are of the
order ρ2(EF ) (logν0/ν)d−1, i.e., much bigger in the regime (1.4) (see also [15] for a similar
result).

The paper is organized as follows. In section 2 we outline the method. In section 3
the Mott formula (1.3) is derived. In section 4 we derive asymptotic formulae for binary
correlators and in section 5 we comment on our results and on their relations to known results.

2. Method

2.1. Effective potential

It was already mentioned in the introduction that extensive studies of the strong localization
regime show that the phenomenon is determined by realizations of the random potential,
containing deep and rare potential wells. For a potential unbounded below (like the Poisson
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potential (2.6) below) the large parameter of the theory is the absolute value of the energy
and/or the amplitude of the potential. These two cases of the strong localization regime are
manifestations of the simplest mechanism of localization: capturing a quantum particle in
strong and rare fluctuations of a random potential5.

In other words, for an overwhelming majority of eigenfunctions ψj , corresponding to the
strongly localized part of the spectrum, there exists a point ξj , the centre of the localization
well, such that ψj decays as exp{−|x − ξj |/rj }. Here rj is the localization radius of ψj . The
localization centres have to be uniformly and chaotically distributed in space and the distances
between them have to be much bigger than the typical localization radii and than the radii
of the localization wells. Hence, one has to expect an effective ‘decoupling’ between the
localization wells.

One obtains a simple form of this picture of the strong localization regime by replacing
the random Schrödinger operator by the direct sum of operators, each of them defined in a
certain cell, containing a single localization well. This procedure of independent quantization
in isolated cells is supported by and even instrumental in studies of the density of states,
the interband light absorption coefficient, and other spectral and physical characteristics of
disordered systems (see, e.g., [5, 7, 17, 21]), as well as of the probability distribution of
spacings between adjacent energy levels (see [24, 23]) in the strong localization regime.
However, the procedure is not appropriate in studies of transport properties of disordered
systems. This is why we replace the procedure of independent quantization in isolated cells by
the less restrictive assumption, according to which relevant properties of the strong localization
regime can be described, assuming that any shortly correlated and smoothly distributed random
potential can be replaced by an (effective) potential of the form

Veff(x) =
∑

j

vj (x − ξj ). (2.1)

Here {ξj } are the Poisson random points of the density µ, modelling the centres of
the localization wells, and the random functions {vj } are independent of each other and
independent of the {ξj }. The {vj } model the shape of the localization wells. We assume that
all vj have a finite range and the typical radius a of vj is related to the typical distance µ−1/d

between wells as

a � µ−1/d . (2.2)

The density µ of the localization centres is not known and has to be found self-consistently.
The density as well as the shapes of the wells may depend on the energy interval in question.

In other words, we believe that the strong localization regime possesses a certain
robustness (insensitivity) with respect to a concrete form of random potential, provided that
it is translation invariant in the mean, shortly correlated and smoothly distributed (the last
two properties facilitate the localization because they make it more unlikely that different
localization wells are of the same shape, thereby suppressing tunnelling between different
localization wells). One may say that our ansatz (2.1) replaces impenetrable walls between
cells of the independent quantization procedure by a kind of ‘soft’ wall, that strongly suppresses
particle mobility but does not exclude it completely.

To avoid technicalities, we will choose a simple form of the localization wells, setting

vj (x) = gjv(
√

gjx) (2.3)

5 We mention another localization mechanism: enhanced backscattering. The mechanism is responsible for complete
localization at high energies in the one-dimensional case, and for weak localization effects in arbitrary dimensions.
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where v(x) is a finite range potential well and {gj } are independent identically distributed
random variables, independent of {ξj } and assuming arbitrary big positive values according to
a smooth probability density p(g).

Summarizing, we can write the following formula for the effective potential,

Veff(x) =
∑

j

gj v(
√

gj (x − ξj )). (2.4)

It should be noted that similar random functions are widely used in localization theory as
‘bare’ random potentials in the Schrödinger equation (see, e.g., [16, 21]). We mean potentials
of the form

V (x) =
∑

j

θju(x − xj ) (2.5)

where u is a non-positive function of a finite range (the single-impurity potential). In the case
where {θj } are independent identically distributed random variables and {xj } form a regular
lattice, the potential models a substitutional alloy, and in the case where θj = θ = const for
all j and {xj } are completely chaotic (Poisson) random points of the density c, the potential

V (x) =
∑

j

θu(x − xj ) (2.6)

models an amorphous medium. Assuming that c is large, θ is small but cθ2 = D is fixed and
shifting the energy by the mean value

cθ

∫
u(y) dy

of the potential (2.6), we obtain a Gaussian random potential with zero mean and with the
correlation function

D

∫
u(x − y)u(y) dy.

In a more general case, where the {xj } are completely chaotic and the {θj } are identically
distributed random variables, independent of each other and of the {xj }, (2.5) is a generalized
Poisson potential.

We would like to stress here that while our effective potential (2.4) is similar to a
generalized Poisson one (because of random gj ), these two should not be identified. In
particular, the density c of the impurity centres {xj } in (2.5) is not the density µ of the
localization centres {ξj } in (2.4) (µ is usually much smaller than c), and the functions θju in
(2.5), modelling the single-impurity potential, have little in common with the functions vj in
(2.4), modelling the form of the localization wells. The latter are formed by sufficiently large
and dense clusters of impurities in which the inter-impurity distances are much smaller than
the typical distance c−1/d between impurity centres {xj }. For example, if the ‘bare’ random
potential is given by (2.6), then it can be shown that the number of xj in a typical localization
well is of the order log E/u(0) � 1 [21].

2.2. Density expansion

Recall that an important property of the effective potential is the small density µ of the
localization centres (cf (2.2)). We describe now a technique that will allow us to use this
property.

Let {Fl(x1, . . . , xl)}l�0 be a system of functions of l d-dimensional variables x1, . . . , xl

(F0 is a constant). We denote the set (x1, . . . , xl) as X. Suppose that the system {Fl}l�0
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satisfies the following conditions (we do not indicate the index l explicitly):

(i) Translation invariance: for any d-dimensional vector a

F(X) = F(X + a) where X + a = (x1 + a, . . . , xl + a).

(ii) Additive clustering:

F(X ∪ (Y + a)) − [F(X) + F(Y )] → 0 as a → ∞, (2.7)

and the decay of the lhs of (2.7) is fast enough (it will be exponential below).

For any system of functions, possessing these properties, we can write the combinatorial
identity

F(X) =
∑
Y⊂X

∑
Z⊂Y

(−1)N(Y\Z)F (Z) (2.8)

where N(X) is the number of points of X.
We will use this identity in the case where X, Y,Z are the sets of random Poisson

points {ξj }, entering in the effective potential (2.1). Recall that an infinite system {ξj } of
Poisson points of density µ in the d-dimensional space can be asymptotically described as
a system of random points ξ1, . . . , ξN , uniformly distributed in a cube �, provided that the
‘thermodynamic’ limit N → ∞, |�| → ∞ and N/|�| → µ is carried out (we will denote
this limiting transition by � → ∞). By using this fact and identity (2.8), we can write that

lim
�→∞

|�|−1〈FN(ξ1, . . . , ξN) − F0〉 = µ(F1 − F0) +
µ2

2

∫
[F2(x) − 2F1 + F0] dx + · · · (2.9)

where the symbol 〈· · ·〉 in the lhs denotes averaging with respect to the Poisson points {ξj }.
In view of (2.4), we will need a more general formula in which the role of ξj is played

by pairs (ξj , gj ), where {gj } is a system of independent random variables of common density
p(g) which are also independent of the {ξj }. The corresponding formula can be obtained from
(2.9), written for fixed gj and subsequently integrated with respect to gj with the probability
density p(g). This yields

lim
�→∞

|�|−1〈FN((ξ1, g1), . . . , (ξN , gN)) − F0〉 =
∫

(F1(g1) − F0)µ(g1) dg1

+
1

2

∫
[F2(x; g1, g2) − F1(g1) − F1(g2) + F0]µ(g1)µ(g2) dx dg1 dg2 + · · ·

(2.10)

where now the symbol 〈· · ·〉 in the lhs of this formula denotes averaging with respect to {ξj }
and {gj } and

µ(g) = µp(g). (2.11)

2.3. Density expansion of the DOS

Now we apply the expansion described above to the density of states of the Schrödinger
equation. We use the self-averaging property of the DOS, according to which [21]

ρ(E) = lim
�→∞

〈
|�|−1

∑
n�1

δ(E − En)

〉
(2.12)

where {En}n�1 are the energy levels of the Hamiltonian H� defined by the Schrödinger
equation with the potential (2.4) in the cube �.
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Comparing the lhs of (2.10) and the rhs of (2.12), we conclude that in this case the role
of Fl in (2.10) is played by∑

n�1

δ
(
E − E(l)

n ((x1, g1), . . . , (xl, gl))
)

where
{
E(l)

n ((x1, g1), . . . , (xl, gl))
}

n�1 is the negative spectrum of the l-wells Hamiltonian

H(l) = −	 +
l∑

j=1

gjv(
√

gj (x − xj )). (2.13)

Thus, applying (2.10) to the DOS and taking into account that we are interested in negative
energies of large absolute value and that H(0) = −	 has no negative spectrum, we find that
the term ρ(0)(E) with l = 0 (the zero-well contribution) is absent in the expansion. Hence,
the leading contribution in µ to the DOS is due to the one-well term of the expansion:

ρ(1)(E) =
∑
n�1

∫
δ(E − E(1)

n )µ(g) dg. (2.14)

For the well of the form gv (
√

gx) we have

E(1)
n = gεn (2.15)

where {εn}n�1 are the negative eigenvalues of the dimensionless operator −	 + v(x). Thus

ρ(1)(E) =
∑
n�1

µ

(
E

εn

)
1

|εn| .

According to the spirit of our approach the density p(g) should decay sufficiently fast as
g → ∞. Thus the leading contribution to ρ(1)(E) is due to the first term of the sum, i.e., we
can use the approximation

ρ(1)(E) 
 µ

(
E

ε1

)
1

|ε1| . (2.16)

Normalizing the well v by the condition

ε1 = −1 (2.17)

we can write

ρ(1)(E) 
 µ(−E). (2.18)

The last formula is a version of the well-known ‘classical’ asymptotic formula for the DOS
valid for smooth random potentials. By choosing as a randomizing parameter of the wells vj

in (2.1) their ground state energies, we can show that an analogue of (2.16) allows us to obtain
also ‘quantum’ versions of asymptotic formulae for the DOS valid for singular v (see [21] for
the respective terminology and results).

It can also be shown that the two-well contribution to the DOS is of the order O(µ2).
We postpone the corresponding argument to section 5.1. Thus the two-well contribution
is negligible with respect to the rhs of (2.18). We conclude that the unknown (and small)
function µ(g), determining our effective potential and having the sense of the probability
density to find a well of amplitude lying between g and g + dg with centre in an infinitesimal
neighbourhood of a given x, coincides in our approximation with the DOS of the Schrödinger
operator. This important conclusion makes our scheme self-consistent. It corresponds to the
basic ingredient of the I Lifshitz approach, according to which the DOS is the probability
density of the localization wells, having the ground state energy E [20]. This interpretation
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of the DOS is widely used in the theory of disordered systems [7, 21]. In our approach it is a
simple consequence of the ansatz (2.4) and of the expansion formulae of the previous section.

Let 	 be an interval of values of random variables gj , lying in the strong localized
spectrum with width much smaller than typical values of the g under consideration. Then
µ̄ = ∫

	
µ(g) dg will be the density per unit volume of wells, whose amplitudes are in 	,

and µ̄−1/d will be the typical distance between these wells. Our approach is based on the
assumption that typical distances between wells are much larger than the typical radii of the
localization wells (cf (1.4)). In the case of the effective potential (2.4), this assumption can be
written as

g−1/2 � µ̄−1/d . (2.19)

3. AC conductivity

3.1. Generalities

Recall that from the point of view of statistical physics, we are dealing with an ideal gas
of electrons in the external random field V (x) (one-body approximation). In this case,
the linear response theory leads to the following formula for the tensor of the zero-temperature
ac conductivity of a macroscopic system of spinless electrons in an external spatially
homogeneous electric field of the frequency ν at zero temperature,

σαβ(ν, EF ) = lim
�→∞

πe2|�|−1
∑
m�=n

δ(EF + ν − Em)δ(EF − En)V
(α)
mn V (β)

nm

where V (α)
mn are the matrix elements of the velocity operator i�α between the states ψm and

ψn of the system, confined to the box �. In the case of a random potential, homogeneous
in mean and weakly correlated, the conductivity is self-averaging [21]. Thus we have in the
thermodynamic limit, assuming for simplicity that the system is rotational invariant in mean,

σαβ(ν, EF ) = πe2

d
δαβσ (ν,EF ) (3.1)

σ(ν,EF ) = lim
�→∞

〈
|�|−1

∑
m�=n

δ(EF + ν − Em)δ(EF − En)|Vmn|2
〉

(3.2)

where

|Vmn|2 =
d∑

α=1

∣∣V (α)
mn

∣∣2
. (3.3)

Since V = i[H,X], where X is the coordinate operator, we have
∣∣V (α)

mn

∣∣ = ∣∣(Em − En)X
(α)
mn

∣∣,
and (3.2) can be written as

σ(ν,EF ) = ν2 lim
�→∞

〈
|�|−1

∑
m�=n

δ(EF + ν − Em)δ(EF − En)|Xmn|2
〉

. (3.4)

where

|Xmn|2 =
d∑

α=1

∣∣X(α)
mn

∣∣2
. (3.5)

Note that we keep the frequency ν non-zero while making the thermodynamic limit � → ∞ in
the above formulae. This prescription is well known in kinetic theory and is also reminiscent of
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keeping a non-zero magnetic field while making the thermodynamic limit for a ferromagnetic
system in order to obtain non-zero macroscopic spontaneous magnetization. Another way to
obtain non-zero dc conductivity is to set ν = 0 in (3.2) but to replace the δ-functions by a
sharp function of width η (usually by the Lorenzian). This corresponds to an imaginary shift
in energies instead of a real-valued shift ν (see, e.g., [2], where an imaginary shift is used). In
this paper, we will use the formula (3.4), assuming always that the frequency is non-zero, but
small compared to the Fermi energy, i.e., we will assume that inequality (1.4) holds.

3.2. Computation

Now we are going to apply the density expansion formula (2.10) to the ac conductivity.
Comparing (3.4) and (2.10), we choose the functions Fl in this case as

ν2
∑
m�=n

δ
(
EF + ν − E(l)

m

)
δ
(
EF − E(l)

n

)∣∣X(l)
mn

∣∣2
(3.6)

where
{
E(l)

n

}
n�1 are negative levels of the l-wells Hamiltonian (2.13), and

X(l)
mn =

∫
xψ(l)

m (x)ψ(l)
n dx. (3.7)

Here the
{
ψ(l)

n

}
n�1 are the bound states of (2.13). For the same reason as in the case of the

DOS, the zero-well contribution σ (0) to the conductivity expansion is absent. Let us show that
the one-well contribution σ (1) is also absent. Combining (3.6) for l = 1 and (2.15), we obtain

σ (1)(ν, EF ) = ν2
∑
m�=n

∫
δ(EF + ν − gεm)δ(EF − gεn)

∣∣X(1)
mn

∣∣2
µ(g) dg

where
{
E(1)

n

}
n�1 are the bound state energies (2.15) of the one-well Hamiltonian H(1)(g) =

−	 + gv(
√

gx), and X(1)
mn is the coordinate matrix element between the corresponding states{

ψ
(1)
l

}
. Non-zero contributions to this expression are due to the pairs (m, n) such that

gεn = EF gεm = EF + ν 
 EF g(εn − εm) = ν. (3.8)

Denoting by ε the typical value of the levels εn of the potential well v and by δε the typical
value of the spacings |εn+1 −εn|, we see that the above conditions are incompatible if gδε � ν,
i.e., if EF δε/ε � ν. Since εn are dimensionless, the last condition is just another form of our
basic condition (1.4).

The two-level contribution σ (2)(ν, EF ) to the ac conductivity is (cf (2.10))

σ (2)(ν, EF ) = ν2

2

∑
m�=n

∫
δ
(
EF + ν − E(2)

m

)
δ
(
EF − E(2)

n

)∣∣X(2)
mn

∣∣2
µ(g1)µ(g2) dg1 dg2 dy (3.9)

where
{
E(2)

n

}
n�1 are the bound state energies of the two-well Hamiltonian

H(2)((x1, g1), (x2, g2)) = −	 + g1v1 + g2v2 (3.10)

in which

vk(x) = v(
√

gk(x − xk)) k = 1, 2

y = x1 − x2, and X(2)
mn are the corresponding coordinate matrix elements.

In view of our basic condition (2.19), we have typically |x1 − x2| � maxg
−1/2
1,2 .

Hence, according to general principles of quantum mechanics, each level of (3.10) should be
(exponentially) close to a certain level of one of infinite distant wells, and each eigenfunction
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is (exponentially) close either to an eigenfunction of one of the wells (non-resonant case) or
to a linear combination of the eigenfunctions of both wells with coefficients of the same order
of magnitude (resonant case).

To make this description more quantitative, consider the one-well Hamiltonians

H
(1)
k = −	 + gkvk k = 1, 2

corresponding to (3.10). Normalize the potential well v(x) by the same condition (2.17). Then
the lowest eigenvalues of H

(1)
k , k = 1, 2 are −gk , and the corresponding eigenfunctions are

ϕk(x) = g
d/4
k ϕ(

√
gk(x − xk)) k = 1, 2 (3.11)

where ϕ(x) is the ground state of the dimensionless operator −	 + v(x). The function ϕ(x)

decays exponentially in x with rate 1. Hence

ϕk(x) ∼ exp(−√
gk|x − xk|) |x − xk| � g

−1/2
k . (3.12)

Since we will be interested mostly in the resonant case, we assume that g1,2 
 |EF |, i.e., the
radii of the ϕk, k = 1, 2 in (3.11) are of the same order of magnitude

g
−1/2
1,2 
 rl = |EF |−1/2 (3.13)

hence rl � |x1 − x2|.
In this situation, we can find the lowest eigenvalues of H(2) in the framework of the widely

used approximation, in which H(2) is replaced by its projection on the span of the functions
ϕ1 and ϕ2.6 The diagonal entries of this 2 × 2 matrix are

(ϕk,H
(2)ϕk) = −gk + gj �=k

∫
vj (x)ϕ2

k (x) dx

= −gk + O(exp(−2|x1 − x2|/rl)) |x1 − x2| � rl (3.14)

and its off-diagonal entry is

(ϕ1,H
(2)ϕ2) = −g1(ϕ1, ϕ2) + (ϕ1, v2ϕ2).

Since v is of finite range, the first term here decays in |x1 − x2| not faster than the second
term. Hence, being interested in distances |x1 − x2| that are much bigger than g

−1/2
1,2 , we can

neglect the second term, i.e., we can use as the off-diagonal entry of the matrix the quantity
−I (x1 − x2), where

I (x1 − x2) = g1(ϕ1, ϕ2) � g2(ϕ1, ϕ2) (3.15)

is known as the overlap integral, and in view of (3.11) and (3.13) we have

I (x) 
 I0 e−|x|/rl |x| � rl (3.16)

with

I0 
 |EF |. (3.17)

We obtain that the two lowest eigenvalues of the two-well Hamiltonian H(2) can be found as
the eigenvalues of the matrix( −g1 −I (x1 − x2)

−I (x1 − x2) −g2.

)
. (3.18)

Assuming that g1 > g2 > 0, we obtain that the eigenvalues of this matrix are

E
(2)
k = −g − (−1)k−1

√
δ2 + I 2 k = 1, 2 (3.19)

6 In the appendix, we compute exactly the negative spectrum of H(2) for v(x) = −δ(x) in the one-dimensional case.
The results for the conductivity, obtained from this spectrum, coincide with those found by using this approximation.



The Mott formula for the ac conductivity and binary correlators 12167

where

g = g1 + g2

2
δ = g1 − g2

2
(3.20)

and the corresponding eigenfunctions of the projection of H(2) are

ψ1(x) = ϕ1(x) cos θ + ϕ2(x) sin θ

ψ2(x) = −ϕ1(x) sin θ + ϕ2(x) cos θ
(3.21)

where

tan θ = I

δ +
√

δ2 + I 2
. (3.22)

We will use these formulae in the rhs of (3.9), keeping there only terms with m, n = 1, 2, i.e.,
in fact, the term corresponding to m = 1, n = 2. It is easy to see that the equalities EF =
E

(2)
1 , EF + ν = E

(2)
2 imply, in view of (3.19), (3.20), that ν = 2

√
I 2(y) + δ2, y = x2 − x1.

Hence, by (3.16), (3.17) and by the condition ν � |EF |, the values of y, contributing to (3.9),
are bounded below by

r(ν) = rl log
2I0

ν
(3.23)

and the values of |δ| do not exceed ν/2. Under these conditions the coordinate matrix element
X

(2)
12 in (3.9),

X
(2)
12 = (x1 − x2)

I

2
√

δ2 + I 2
+

(
g

−1/2
1 − g

−1/2
2

) I

2
√

δ2 + I 2

∫
xϕ2(x) dx

+
δ√

δ2 + I 2

∫
xϕ1(x)ϕ2(x) dx (3.24)

between states (3.21) can be replaced by

X
(2)
12 
 (x1 − x2)

I

2
√

δ2 + I 2
. (3.25)

Indeed, the second term in (3.24) can be omitted because its ratio to the first term is of the
order ν(|EF | log 2|EF |/ν)−1 � 1. Besides, the term is zero if ϕ is even. The relative order of
the third term is the same as the second one.

In view of the above we obtain that the two-well contribution (3.9) to the ac conductivity
is

σ (2)(ν, EF ) = ν

∫ |y|2I 2(y)

δ2 + I 2(y)
δ
(
EF + ν − E

(2)
2

)
δ
(
EF − E

(2)
1

)
µ(g1)µ(g2) dg1 dg2 dy. (3.26)

We integrate first the product of two δ-functions with respect to g1 and g2, taking into account
that |g1 − g2| � ν � |EF | ∼ g1,2. This allows us to replace µ(g1) and µ(g2) by µ(−EF ), to
set

δ = 1
2

√
ν2 − 4I 2(y) (3.27)

and to obtain in view of (2.18)

σ (2)(ν, EF ) = νρ2(EF )

∫
2|I (y)|�ν

|y|2I 2(y)√
ν2 − 4I 2(y)

dy. (3.28)

Note that the restriction 2|I (y)| � ν of the domain of integration in (3.28) is because of the
presence of the two δ-functions in (3.26), i.e., in fact, because of energy conservation.

In view of the inequalities 0 < ν � EF and formulae (3.16)–(3.17), we can replace the
condition 2|I (y)| � ν by the condition |y| � r(ν), where r(ν) is defined in (3.23).
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The integrand in (3.28) is divergent at the lower limit |y| = r(ν) and decays exponentially
fast at infinity with the rate 2/rl in view of (3.16). Thus the main contribution to the integral
is due to a rl-neighbourhood of the lower integration limit. This leads to the asymptotic
expression

σ (2)(ν, EF ) = ν2ρ2(EF )Sd

4
rd+2
l

(
log

2I0

ν

)d+1

(3.29)

where Sd is the area of the d-dimensional sphere. Taking into account relations (3.17), and
(3.13), we obtain finally that

σ (2)(ν, EF ) = ν2ρ2(EF )Sd

4
|EF |−(d+2)/2

(
log

2|EF |
ν

)d+1

. (3.30)

In particular, we have for d = 1

σ(ν,EF ) = ν2ρ2(EF )

2
|EF |−3/2

(
log

2|EF |
ν

)2

. (3.31)

These are our versions of the Mott formula (1.3). They will be discussed in more detail in
section 5.

4. Correlation functions

4.1. Generalities

In this section we study the following two-point correlation functions,

C1(x − y; ν,E) = 〈ρE(x, y)ρE+ν(y, x)〉 (4.1)

and

C2(x − y; ν,E) = 〈ρE(x, x)ρE+ν(y, y)〉. (4.2)

In writing the above expressions, we took into account the translation invariance in coordinates
of the correlation functions, following from the translation invariance in mean, a fundamental
property of disordered systems.

The function C1 of (4.1) is closely related to the ac conductivity. Indeed, recall the spectral
theorem, according to which

ρE(x, y) =
∫

δ(E − E′)ψE′(x)ψE′(y) dE′ (4.3)

where the symbol
∫ · · · dE denotes both the integration over the continuous spectrum and the

summation over the point spectrum.
Formulae (4.3), (3.4), and (4.1) imply that

σ(ν,E) = −ν2

2

∫
|x|2C1(x, E, ν) dx. (4.4)

The function C2 of (4.2) is the local DOS–DOS correlator and is a characteristic of localization,
providing information on correlations of eigenstates whose energy difference is ν and that are
localized in spatial domains of distance x − y.

Comparing (1.1) for l = 2 and (4.1) and (4.2), we obtain the equalities

C1(x; ν,E) = K2(0, x; x, 0;E,E + ν)

C2(x; ν,E) = K2(0, 0; x, x;E,E + ν).
(4.5)
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We list below certain properties of C1 and C2:

(i)

|C1(x; ν,E)| � C2(x; ν,E). (4.6)

The inequality follows from the inequality |ρE(x, y)|2 � ρE(x, x)ρE(y, y) that is a simple
consequence of the Schwarz inequality 〈ab〉2 � 〈a2〉〈b2〉 and of the spectral theorem (4.3).

(ii) ∫
C1(x; ν,E) dx = δ(ν)ρ(E). (4.7)

This relation follows from (4.1) and (1.2) and can be interpreted as a weak form of the
decay of the correlator C1 at infinity.

(iii)

lim
�→∞

|�|−1
∫

�

C2(x; ν,E) dx = ρ(E)ρ(E + ν). (4.8)

To prove this formula, we use the ergodic theorem for ρE(x, x), implying the validity of
the relation

lim
�→∞

|�|−1
∫

�

ρE(x, x) dx = 〈ρE(0, 0)〉 ≡ ρ(E)

on almost all realizations of the random potential. Applicability of the ergodic theorem
follows from the translation invariance in mean and the decay of the spatial correlation in
disordered systems (see, e.g., [21]).

Formula (4.8) expresses the decay of correlations between two density operators in
(4.2) as |x1 − x2| → ∞. Indeed, its rhs is the product of the averages of these two
operators (see (1.2)), and its lhs is a weak form of limx→∞ C2(x, E,E + ν).

(iv) Assume that for a certain E

Cα(x; ν,E) = δ(ν)pα(x;E) α = 1, 2. (4.9)

Then

(a)

p1(x;E) = p2(x;E) = p(x;E) � 0.

(b)

p(x;E) =
〈∑

loc

δ(E − Ej)ψ
2
j (0)ψ2

j (x)

〉
(4.10)

where the symbol
∑

loc denotes the summation over the localized states only.
(c) If one defines the density of localized states as

ρloc(E) =
∫

p(x;E) dx =
〈∑

loc

δ(E − Ej)ψ
2
j (0)

〉
then

ρloc(E) � ρ(E) (4.11)

and the inequality ρloc(E) > 0 is equivalent to the existence of localized states in
a neighbourhood of E, and the equality ρloc(E) = ρ(E) is equivalent to complete
localization in a neighbourhood of E.
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The above properties follow from the spectral theorem (4.3). The functions pα(x;E) of (4.9)
are the ‘diagonal parts’ of the rhs of equalities (4.5), viewed as functions of two variables
E1 = E and E2 = E + ν.

The property (iv) will not be used below. We presented this property to demonstrate the
usefulness of the correlators C1 and C2 in the theory of a disordered system. In particular,
in the classic paper by Anderson [4] the positivity of

∫
p(0;E) dE was used as an indicator

for localization. The quantum mechanical meaning of
∫

p(0;E) dE is the probability for a
particle to be in an infinitesimal neighbourhood of the origin at time t = ∞, provided that at
t = 0 it was at the origin (the return probability density) [21].

4.2. Computations

To apply the density expansion formula (2.10) to the correlation functions (4.1) and (4.2), we
write them in the form of extensive quantities per unit volume,

Cα(x) = |�|−1�α(x) α = 1, 2 (4.12)

where

�1(x) =
∫

�

C1((x + a) − a) da =
∫

�

〈ρE(a, x + a)ρE+ν(x + a, a)〉 da (4.13)

and

�2(x) =
∫

�

C2((x + a) − a) da =
∫

�

〈ρE(a, a)ρE+ν(x + a, x + a)〉 da. (4.14)

Now it is clear that the role of the functions Fl in (2.10) for Cα will be played by �α , written
for the l-well Hamiltonian (2.13).

By using these formulae, one can prove that the zero-well and the one-well contributions
to Cα, α = 1, 2 are absent by the same argument as for the conductivity. The two-well
contribution C

(2)
1 to C1 is (cf (3.9)),

C
(2)
1 (x; ν,E) = 1

2

∑
m,n

∫
δ(E + ν − Em)δ(E − En)

×ψm(a)ψm(a + x)ψn(a)ψn(a + x)µ(g1)µ(g2) da dy dg1 dg2 (4.15)

where y is the separation between two wells, implicit in ψm,n and in Em,n.
Since ν > 0, the diagonal part

∑
m=n of the double sum is zero. Moreover, as in the

case of the conductivity, we restrict ourselves to the two lowest levels of the spectrum of
H(2) of (3.10), found in the previous section in the framework of the projection method. This
leaves the term m = 1, n = 2 in the double sum of (4.15). By using (3.19), we can integrate
with respect to g1 and g2 the product of two δ-functions, fixing g1 and g2 by the relations
E + g +

√
δ2 + I 2 = 0, E + g + ν −

√
δ2 + I 2 = 0 . In view of the condition 0 < ν � E we

obtain, replacing µ(−g1) and µ(−g1) by ρ(E) in view of (2.18) (cf (3.28)),

C
(2)
1 (x; ν,E) = ρ2(E)ν

∫
da ψ1(a)ψ2(a)

∫
2|I (y)|�ν

ψ1(a + x)ψ2(a + x)
ν√

ν2 − 4I 2(y)
dy.

(4.16)

According to the previous section, if ν � E, the restriction 2|I (y)| � ν is equivalent to
|y| � r(ν), where the resonant radius r(ν) � rl is defined in (3.23). This and the form (3.21)
of the functions ψ1,2 imply that if |g1 − g2| � ν � g ∼ |E|, then

ψ1(a)ψ2(a) = cos θ sin θ [ϕ2(a) − ϕ2(a + y)] + O(e−2r(ν)/rl )
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where y = x1 − x2. The formula and the analogous formula with a replaced by a + x, lead to
the following asymptotic expression for the two-well contribution C

(2)
1 to the correlator C1:

C
(2)
1 (x; ν,E) = 2ρ2(E)

ν

∫
ϕ2(a) da

×
∫

|y|�r(ν)

I 2(y)√
ν2 − 4I 2(y)

[ϕ2(a + x) − ϕ2(a + x − y)] dy. (4.17)

Similar arguments show that the two-well contribution

C
(2)
2 (x; ν,E) = 1

2

∑
m�=n

∫
δ(E + ν − Em)δ(E − En)

×ψ2
m(a)ψ2

m(a + x)µ(g1)µ(g2) da dg1 dg2 dy (4.18)

to the correlator C2 is with the same accuracy:

C
(2)
2 (x; ν,E) = C

(2)
1 (x; ν,E) + ρ2(E)

∫
ϕ2(a) da

∫
|y|�r(ν)

ν√
ν2 − 4I 2(y)

ϕ2(a + x − y) dy.

(4.19)

We formulate now several properties of C
(2)
1 and C

(2)
2 , following from (4.17)–(4.19).

According to (4.17)∫
C

(2)
1 (x; ν,E) dx = 0

This relation is in agreement with the exact sum rule (4.7), because formula (4.17) was obtained
under the assumption that ν > 0.

Likewise, we have the limiting relation

C
(2)
2 → ρ2(E) x → ∞ (4.20)

which is in agreement with the exact sum rule (4.8).
It is also easy to see that C

(2)
1 (x; ν,E)

(i) has a positive peak of order

ρ2(E)

(
log

2I0

ν

)d−1

(4.21)

at the origin;
(ii) decays exponentially fast with the rate 2/rl for |x| � rl , and is exponentially small in the

spatial domain rl � |x| � r(ν) = rl log 2I0/ν � rl ;
(iii) has a negative peak of the same order of magnitude (4.21) at a rl-neighbourhood of

|x| = r(ν);
(iv) decays exponentially for |x| � r(ν) with the rate 2/rl .

This behaviour of C
(2)
1 allows us to obtain the Mott formula (3.29) from relations (4.4)

and (4.17).
The correlator C

(2)
2 has the same behaviour as C

(2)
1 in x up to |x| � r(ν), in particular it

is exponentially small in x if rl � |x| � r(ν). Then C
(2)
1 becomes asymptotically equal to

ρ2(E) in the domain |x − r(ν)| � rl and it is equal to ρ2(E) for all x, |x| � r(ν) (see (4.20)).
In view of spectral theorem one can expect ρE(x, x) to be proportional to ψ2

E(x) in the strong
localization regime (cf (5.18)). Then the factorization property (4.20) can be interpreted as
the statistical independence of the localized states of energies close to each other and with
separation much bigger than r(ν). On the other hand, the exponential smallness of C1,2 for



12172 W Kirsch et al

0 2 4 6 8 10 12 14 16 18 20

x x
0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

1.2

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1. One-dimensional correlation functions C1(x) and C2(x) with ν = 10−4, rl = 1 and
ρ(E) = 1.
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Figure 2. Two-dimensional correlation functions C1(x) and C2(x) with ν = 10−4, rl = 1 and
ρ(E) = 1.

rl � |x| � r(ν) can be interpreted as a kind of strong correlation between states close in
energy, that are not sufficiently well separated in space. These correlations can be viewed as
a manifestation of a certain ‘repulsion’ of nearby levels in the sense that the probability that
nearby levels having a given spacing tends to zero as the spacing tends to zero (see [12, 3])
for discussions of this property). Figures 1 and 2 show examples of graphs of C1,2.

Results similar to those outlined above were obtained as asymptotically exact ones in
[14] in the one-dimensional case of the strong localization regime and in [10, 11] in the one-
dimensional case of the weak localization regime (see the following section for more details).
We see, however, that in dimension greater than 1 the characteristic value (4.21) of the peak
of the correlation function (3.2) diverges as the difference of the energies tends to zero. Thus,
unlike the conductivity that has the log-factor in all dimensions, the correlation functions C1,2

are logarithmically big in the energy difference for |x| ∼ r(ν) only in dimension greater
than 1. Similar results were obtained in [15] in the framework of the instanton approach (see
section 5.4).

The ‘two-hump’ states (3.21) appear in our approach just as a computational tool, allowing
us to find leading contributions to the low frequency conductivity and to the correlators
C1,2, by using the density expansion of section 2.1, just as the ‘one-hump’ states (3.11) are
necessary to find the low energy asymptotic of the density of states in our approach (see
also section 2.3), in the optimal fluctuation method [20, 21, 7], and its version known as
the instanton approach (see section 5.4, [15] and references therein). On the other hand,
the development of localization theory over the last decades suggests that the ‘one-hump’
states carry certain information on the structure of genuine localized states in disordered
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systems. This suggests the belief that the ‘two-hump’ states also reflect certain properties
of genuine localized states. If this is true, we can interpret the above results on the spatial
behaviour of the correlators C1,2 in the following way. The existence of the length scale r(ν)

of (3.23), that determines drastic changes of the spatial behaviour of the correlators C1,2, is
due to the ‘interaction’ between close energy levels, and the interaction mechanism is the
resonant tunnelling between the ‘bare’ one-hump states, i.e., between different centres of
genuine states. The parameter I0 of (3.16), (3.17) is the characteristic interaction energy,
determining the level splitting (spacing), and r(ν) is the tunnelling distance, determined by
the two energy scales (E = (El + E2)/2, v = |E2 − E1|, E � ν). This inter-level interaction
is a mechanism of a certain level repulsion, that prevents the spatial domains where the states
are essentially non-zero to be close and, as a result, leads to the exponentially small values of
the two-point correlators for rl � |x| � r(ν).

5. Discussion

5.1. Corrections

We comment now on the corrections (next terms of the density expansions) to our formulae of
sections 2–4. We are not able to prove the convergence of these expansions. We simply argue
that they should be asymptotic, i.e., that their terms should be small in successive powers of
ρ(E). We will begin from the density of states itself.

It is easy to see that the next term in the expansion of the DOS has the form

ρ(2)(E) =
∫ {[

δ
(
E − E

(2)
1

) − δ
(
E − ε

(2)
1

)]
+

[
δ
(
E − E

(2)
2

) − δ
(
E − ε

(2)
2

)]}
µ(g1)µ(g2) dy dg1 dg2

where E
(2)
1,2 are given by (3.19), and ε

(2)
1 = − max(g1, g2), ε

(2)
2 = − min(g1, g2). Recall

that we assume that µ(g) is smooth enough and decays sufficiently fast for large g. Thus
ρ(2) will be of the order O(µ2) if the integral in the relative distance y between the wells is
convergent. This fact follows from the inequality

∣∣Ek − ε
(2)
k

∣∣ � (
√

δ2 + I 2(y)− |δ|) � |I (y)|,
the exponential decay of I (y) (see (3.16)) and the smoothness of µ(g), allowing us to transfer
derivatives of δ-functions to the µ.

In the general case of the correction of order l the appropriate integrals in relative distances
between wells will be convergent because of the subtractions of the functions Fk of lower orders
k < l from that of order l in the lth term of the density expansion (2.10), the sufficiently fast
splitting (additive clustering) of negative eigenvalues E(l) of the l-wells problem into the
sums of negative eigenvalues E(k) of the k-wells problems k < l and again because of the
smoothness of µ(g).

The situation is less simple in the case of the conductivity as we have seen already
for l = 2. This is because of the presence of families of tunnelling configurations for any
number of wells (for example, for l = 3 there are two families: the equilateral triangles and
the three equidistant points on a straight line). These configurations are responsible for the
absence of decay (and even for the polynomial growth) in distances between wells of matrix
elements x

(l)
ij on the corresponding resonant sub-manifolds and for the appearance of extra

powers of log ν0/ν (where ν0 can be different from that of formula (3.30)). However, since
the dimension of these resonant manifolds grows slower than l, these powers of log ν0/ν will
always be multiplied by powers of ν, given by the dimensions of the manifolds transversal
to the resonant ones. This is why the higher terms in the expansion of the low frequency
conductivity should be small compared to the terms in Mott’s formula (1.3).
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In other words, it seems reasonable to believe that these higher resonant configurations
will produce new peaks and new length scales in the higher terms of the density expansion
of the correlators, but that the amplitudes of the peaks will be small relative to the amplitude
(4.21) of the peak due to the resonant pairs. One can also speculate that for bigger densities of
states (i.e., for energies closer to the mobility edge) higher resonant configurations will play a
more significant role, leading eventually to the loss of the exponential decay of the correlators
and to the delocalization transition according to the scenario outlined in [20, 30].

5.2. Asymptotically exact one-dimensional results

The asymptotic behaviour of the low frequency conductivity in the strong localization regime
of the one-dimensional Gaussian white noise potential, defined by the relations

〈V (x)〉 = 0 〈V (x)V (y)〉 = 2Dδ(x − y) (5.1)

was studied in [14]. The potential is often used in the theory of one-dimensional disordered
systems (see [21] for results and references). In particular, the density of states ρ(E) and
the Lyapunov exponent γ (E) of the Schrödinger equation with this potential can be found in
quadratures. The strong localization regime corresponds to negative energies of large absolute
value

D2/3 � |E|. (5.2)

In this case we have the following asymptotic formulae [21]:

ρ(E) = 2|E|
πD

exp(−4|E|4/3/3D) γ (E) = |E|1/2. (5.3)

Moreover, the rate of the exponential decay of the eigenfunctions ψE is γ (E), because we
have with probability 1 [21, 27]

lim
|x|→∞

|x|−1 log
(
ψ2

E(x) + ψ ′2
E (x)

)1/2 = −γ (E). (5.4)

Hence, the exact asymptotic form of (5.3) for the localization radius

rl(E) = 1/γ (E) (5.5)

coincides with our approximate formula (3.13).
In the paper [14] the low frequency conductivity was found using the Grassmann functional

integral representation of the Green function, which leads to an integral representation for the
correlator C1 of (4.1) (recall that the conductivity is related to the correlator via formula (4.4)).
The condition (5.2) allowed the authors to apply the saddle point method to this integral
representation. We will summarize the results of [14] in a form close to that of sections 3
and 4.

The ‘two-hump’ states, similar to (3.21) appear in [14] as the saddle points of the effective
action for C1. The states have in general a rather complicated (two-instanton) form, but in the
low frequency limit 0 < ν � |E| they can be written in the form (3.21), in which the role of
the ‘bare’ states is played by

ϕ1,2(x) = 1√
2rl cosh (x ± y/2) /rl

(5.6)

where y � y0(ν) and

y0(ν) = rl log 8|E|/ν (5.7)
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(cf (3.11), (3.12), and (3.23)). As for the angle θ of (3.21), it is defined by the relation
exp(−y/rl) = exp(−y0/rl) sin 2θ , that can be written as

tan θ = exp(−y/rl)

exp(−y0/rl) +
√

exp(−2y0/rl) − exp(−2y/rl)
. (5.8)

Introduce Ĩ (y) = Ĩ 0 exp(−y/rl), where Ĩ 0 = 4|E|. Then formula (5.7) can be written as
Ĩ (y0) = ν/2. These formulae have to be compared with (3.16) and (3.17). Furthermore,
setting

δ̃ =
√

ν2/4 − Ĩ 2(y) =
√

Ĩ 2(y0) − Ĩ 2(y) (5.9)

(cf (3.27)), we can write (5.8) in a form analogous to that of (3.22).
According to [14], the correlator C1 has the following asymptotically exact form for

0 < ν � |E|,
C1(x;E) = 2ρ2(E)

∫
da

∫
y�y0

ψ1(a)ψ1(a + x)ψ2(a)ψ2(a + x)

× exp(−y/rl)√
exp(−2y0/rl) − exp(−2y/rl)

dy

which can be written as (4.16) because, in view of the above notation, we can write the
expression exp(−y/rl)(exp(−2y0/rl) − exp(−2y/rl))

−1/2 in the last formula as ν(ν2 −
4Ĩ 2(y))−1/2.

Likewise, the asymptotically exact expression for the low frequency conductivity, obtained
in [14], coincides with our formula (3.28), and the correlator C2 has the form (4.19), after the
replacement EF → 4EF under the log sign. The correlator C2 was not considered in [14],
however it can be found by using the techniques developed in the paper.

We note a certain difference of these asymptotically exact results and our results. Namely,
the role of the resonant distance r(ν) of (3.23) in the results of [14] is played by (5.7), which
differs from (3.23) by the factor 4 under the logarithm. A possible simple reason for this
difference could be the fact that our estimate (3.17) for the amplitude I0 of the overlap integral
indicates only its order of magnitude, but not its precise value, or, more generally, that the
projection method is not precise enough.

5.3. Weak localization regime in one dimension

The case of the Gaussian white noise (5.1) in one dimension has also been studied in the weak
localization regime of large positive energies

D2/3 � E (5.10)

(see the works [6, 1, 21, 11, 10]). The density of states in this case is the free one
ρ0(E) = (2πE)−1/2, and the localization radius is

rl = 4E

D
. (5.11)

The rate of the exponential decay of wavefunctions is 1/rl with probability 1, as it was in the
strong localization regime (see (5.4)).

There are several techniques that can be used in this case [6, 1, 21, 11], and yield the
low frequency conductivity and the correlators C1 and C2 in quadrature. It turns out that
these quantities have qualitatively the same spatial behaviour as in the strong localization
regime, provided that 2EF (i.e., 2I0 according to (3.17)) in (3.31) is replaced by

(
D/2E

1/2
F

)
.

Note that
(
D/2E

1/2
F

)−1
coincides with the relaxation time τ, well known from the kinetic
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theory [10]. According to [8], the quantities I0 and τ−1 have the same meaning: they give the
order of magnitude of the difference of the energies (spacing) of two localized states, whose
centres are separated by a distance of the order of the localization radius. Similarly, the role
of the resonant distance in the two-point correlators C1,2 is played by (cf (3.23) and (5.7))

r̂(ν) = rl log 8/ντ (5.12)

and the rate of the exponential decay of the two-point correlators C1,2 near the origin is 1/2rl .
This rate is four times less than the rate 2/rl of these correlators in the strong localization
regime, found in section 3 from the naive prediction, based on the spatial behaviour of the
envelope of the eigenfunctions with probability 1 (see (5.4)), and in [14] from an asymptotically
exact analysis of the corresponding correlators. This difference can be related to the fact that
eigenfunctions in the one-dimensional case in the weak localization regime are much more
spread out than in the strong localization regime. Hence, their behaviour on almost all
realizations can differ from the behaviour of their moments entering exact formulae (3.2),
(4.1) and (4.2).

We stress that the basic properties of the strong localization regime and, in particular,
those motivated assumptions and techniques of this paper, are different in several important
points from the basic properties of the weak localization regime in dimension 1, where the
mechanism of localization is not trapping in deep and rare localization wells but the enhanced
backscattering due to the destructive interference between incident and reflected waves from
many defects. One of the manifestations of this complex statistical structure of wavefunctions
in the weak localization regime is the value of the rate of exponential decay of the correlators
C1,2, discussed above. Moreover, according to [11], the characteristic length scale of the
correlators C1,2 in the neighbourhood of r(ν) is

√
r(ν)rl , i.e., is much bigger than the scale rl

in the neighbourhood of the origin, while, according to our formulae and respective formulae
of [14], in the strong localization regime this scale is rl both near r(ν) and the origin.

5.4. Instanton approach

This is a version of the variational method, proposed first by I Lifshitz [20] to find the
asymptotic form of the density of states and other characteristics of disordered systems in
the strong localization regime (see, e.g., [7]). The instanton approach was used to analyse
the correlators C1,2 and the low frequency conductivity for the white noise random potential
in d dimensions in paper [15], in which the reader can find references on earlier applications
of the approach. It is based on the assumption that in the strong localization regime the
two-point correlators correspond to the two-well potential that minimizes the total probability
distribution of the random potential under the constraints that H(V )ψk = Ekψk, k = 1, 2
and that the well centres of the ‘optimal’ potential are a distance y = x1 − x2 apart. This
has to be compared with the DOS computation, where it is assumed that the optimal potential
is a well for which H(V )ψ = Eψ (see [21, 7]). The derivation of final formulae in [15]
is rather involved because of the existence of two energy scales and of collective modes, in
particular those that correspond to the centre of mass (x1 + x2)/2 of the optimal potential
(it is an analogue of our parameter a in (4.12)–(4.14)). As a result, it is shown in [15] that in
the strong localization regime (called the hydrodynamic regime in [15]) the correlator C1 and
the low frequency conductivity have qualitatively the same form as those found in sections 3
and 4.

We note also that the one-dimensional results for the white noise potential of [14] can be
viewed as a justification of the instanton approach in the one-dimensional case, because it was
shown in this paper that the two-well potential of a special from is indeed a saddle point of
the respective functional integral.
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5.5. Maryland model

The most widely known signature of localization is the exponential decay of the localized states
at infinity. However, the initial derivation of the Mott formula (1.3) and the above derivation
are based not only on the exponential localization, reflected in the exponential decay of ‘bare’
states of the independent quantization in each localization well, but also on the weak correlation
between the spectra of independent quantization, reflected in the statistical independence of
localization wells in our effective potential (2.1) and in the appearance of the ‘two-hump’
states in our calculations of sections 3 and 4. The relevance of the last property becomes
clearer if one recalls the results obtained for an explicitly soluble model of an incommensurate
system, known as the Maryland model [13, 26, 28]. This is a multi-dimensional tight binding
model with an arbitrary short-range and translation invariant hopping and with the potential
of the form

V (x) = g tan π(α · x + ω) x ∈ Zd (5.13)

where g > 0 is the coupling constant, α is a d-dimensional vector with incommensurate
components, and ω ∈ [0, 1) is a phase, that plays the role of a randomizing parameter. It was
found in the mentioned papers that if for some C > 0 and β > d the vector α satisfies the
Diophantine condition

|α · x + m| � C/|x|β (5.14)

for any integer m and x �= 0, then all the states of the model are exponentially localized for
any coupling constant, any energy and arbitrary dimensionality d of the lattice Zd . Since the
potential has arbitrary high peaks, the model can be viewed as an explicitly soluble model
of the strong localization regime. The spectrum of the model consists of the solutions of the
equation

N(Et(ω)) = α · t + ω (mod 1) (5.15)

where t is a lattice point, N(E) = ∫ E

−∞ ρ(E′) dE′,

ρ(E) = 1

π

∫
Td

g

(w(k) − E)2 + g2
dk

is the density of states, in which w(k) is the Fourier transform of the hopping coefficient, and
Td is the d-dimensional torus.

It is easy to show that for each point t of the d-dimensional lattice the equation has a unique
solution, that if Et1(ω) = Et2(ω), then t1 = t2, and that the set {Et(ω)}t∈Zd of eigenvalues is
dense for any ω ∈ [0, 1).

The corresponding eigenfunctions ψt, t ∈ Zd have the form

ψt(x) = χ(x − t, Et (ω)) (5.16)

where χ(x,E) decays exponentially in x,

|χ(x,E)| � C exp(−|x|/rl) (5.17)

with some positive rl(E). Formulae (5.15)–(5.17) seem fairly natural in the case of the strongly
incommensurate potential (5.13), where due to the absence of any symmetry the only good
quantum number to label levels and states is the ‘centre’ of the localization well.

One can also say that Mott’s notion of the localization centres is explicit here, because,
according to (5.15) and (5.16), for any lattice point t there exists a unique eigenvalue Et , whose
eigenfunction is exponentially localized in a neighbourhood of t. Thus the set of localization
centres coincides with the whole lattice and the density of localization centres, whose states
have energies in a neighbourhood of a given E, is the density of states ρ(E). This fact can be
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interpreted as the uniform distribution in space of the localization centres, corresponding to
energy E, and is in qualitative agreement with our assumptions of section 2, formula (2.18) in
particular.

On the other hand, the low frequency conductivity and the correlators C1 and C2 for the
potential (5.13) have a rather different structure than in the case of random potential discussed
in sections 3 and 4. This can be seen from the form of the kernel ρE(x, y), following from
(5.15), (5.16):

ρE(x, y) =
∑
t∈Zd

δ(E − Et(ω))χ(x − t, Et (ω))χ(y − t, Et (ω)). (5.18)

Consider first the correlator C2. Plugging (5.18) into (4.2), and recalling that the averaging
operation 〈· · ·〉 here is the integration with respect to the parameter ω ∈ [0, 1) of (5.13), we
find first of all that the correlator C2 is not a regular function. Rather, there exists a dense set
of special frequencies for which C2 has δ-peaks. If, however, we are interested in the gross
features of C2, then we can apply a certain smoothing procedure, say ν−1

∫ ν

0 · · · dν ′. Then we
obtain that there exists the length scale

r1(ν) =
(

ν0(E)

ν

)1/β

ν0(E) = C/ρ(E) (5.19)

(here β and C are defined in (5.14)), such that C2(x; ν,E) is of the order exp(−r1(ν)/rl) if
|x| � r1(ν), and C2(x; ν,E) is ρ2(E) if |x| � r1(ν), and the transition from the first value to
the second one is in the layer |x − r1(ν)| � rl , where rl is defined in (5.17). We see that the
qualitative form of the correlator C2 for |x| � rl is similar to that in the random case, however
there is no peak at the origin and the length scale (5.19) is polynomial in ν (cf (3.23)). In
addition, the length scale (5.19) has a different origin from (3.23): it is not due to the tunnelling
for ‘soft’ resonant pairs, but due to the Diophantine condition (5.14), which determines now
the distance to the nearest localization well of almost the same energy. At low frequencies
r1(ν) is much bigger than the resonance tunnelling distance r(ν) of (3.23). This leads to the
qualitative change of form of the correlator C1. Indeed, by using the same argument, we find
that C1 is of the order exp(−2r1(ν)/rl) � 1 for all x. This and formula (4.4) imply that the
low frequency conductivity is of a similar order [26]

σ(ν,EF ) � exp{−(ν1(E)/ν)1/β} ν1 = 2βν0

r
β

l

. (5.20)

The significant difference between (5.20) and (1.3) can be related to the absence of long range
tunnelling in the Maryland model. The spectrum of the model is too ‘rigid’, the energy levels
are too regularly distributed and small level spacings are too rare for the long-range tunnelling
to happen. This illustrates the role of resonance tunnelling in obtaining the Mott formula as
well as the range of applicability of the approach of this paper, based on ansatz (2.1) and
on the density expansion. Besides, we see that the low frequency conductivity provides a
physical distinction between the strong localization regimes of a random shortly correlated
and smoothly distributed potential, and the incommensurate potential (5.13) (recall that the
density of states and the Lyapunov exponent coincide for the Maryland model and for the
random model in which the potential is a collection of independent identically distributed
Cauchy random variables, and in which we expect our approach to be applicable). Besides,
recalling the structure of the localized states for smooth incommensurate potentials of large
amplitude in one dimension [29], e.g. the potential g cos 2π(αx + ω), g � 1, one may expect
that these potentials will be closer to random potentials in the spatial behaviour of two-point
correlators and the low frequency asymptotics of the conductivity.
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Appendix. One-dimensional case with delta potentials

To support the usage of the projection method by which the bound states of the two-well
Hamiltonian in section 3.2 were found, we will consider here the one-dimensional case with
two delta-wells. The corresponding Hamiltonian is

H(2) = − d2

dx2
− 2

√
g1δ(x − x1) − 2

√
g2δ(x − x2) (A.1)

where g1,2 > 0. In this case each of two one-well Hamiltonians

− d2

dx2
− 2

√
g1,2δ(x − x1,2)

has the unique bound state

ϕ1,2(x) = g
1/4
1,2 ϕ(

√
g1,2x) ϕ(x) = e−|x| (A.2)

corresponding to the energy

E
(1)
1,2 = −g1,2. (A.3)

Since the Hamiltonian H(2) is invariant under translation, we can replace x1 by 0, and x2 by
y. It is easy to see that H(2) has two bound states,

ψ1,2(x) = [
√

g1ψ(0) exp(−
√

|E||x|) +
√

g2ψ(y) exp(−
√

|E||x − y|)]|E=E1,2 (A.4)

where E
(2)
1,2 are the corresponding energies. They solve the equation

(
√

|E| − √
g1)(

√
|E| − √

g2) = √
g1g2 exp(−2

√
|E||y|). (A.5)

Assuming the same accuracy as in section 3.2 (|g1 − g2| � g1,2, |y| � g1,2), we find that
the solutions E

(2)
1,2 of (A.5) have the form (3.19) in which I (y) = 2g exp(−√

g|y|) (cf (3.16),
(3.17)), and the eigenfunctions (A.2) have the form (3.21), (3.22) in which ϕ1,2 are given
by (A.2).

Another way to act in this case is to plug the exact states and levels, given by (A.4), (A.5),
into expressions (3.9), (4.15) and (4.18) for the two-well contributions for the conductivity and
the correlators C1 and C2. This leads to rather complicated formulae which, however, have the
same asymptotic behaviour as our formulae (3.28), (4.17) and (4.19) in the asymptotic regime
0 < ν � |E|.
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